
Microprocessors (0630371)
Fall 2010/2011 – Lecture Notes # 17

Boolean and Comparison Instructions

Objectives of the Lecture
� AND Instruction
� OR Instruction
� XOR Instruction
� NOT Instruction
� TEST Instruction
� CMP Instruction
� Applications

Programs that deal with hardware devices must be able to manipulate individual bits in numbers.
Individual bits must be tested, cleared and set. Data encryption and compression also rely on bit
manipulation.

AND Instruction
� Performs a Boolean AND operation between each pair of matching bits in two operands
� Syntax:

AND destination, source
� (same operand types as MOV)

 AND reg, reg
 AND reg, mem
 AND reg, imm
 AND mem, reg
 AND mem, imm

Logical truth table

OR Instruction
� Performs a Boolean OR operation between each pair of matching bits in two operands
� Operands can be 8, 16, or 32 bits and they must be of the same size
� Syntax (the same as the AND instruction):

OR destination, source

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 0 0 1 0 1 1

AND

unchangedcleared

Logical truth table

XOR Instruction
� Performs a Boolean exclusive-OR operation between each pair of matching bits in two

operands
� Syntax:

XOR destination, source

� XOR is a useful way to toggle (invert) the bits in an operand.

NOT Instruction
� Performs a Boolean NOT operation on a single destination operand
� Syntax:

NOT destination

TEST Instruction

� Performs a nondestructive AND operation between each pair of matching bits in two operands
� No operands are modified, but the Zero flag is affected.

CMP Instruction
� Syntax:

CMP destination, source
� The compare (CMP) instruction performs an implied subtraction of a source operand from a

destination operand. Neither operand is modified.
� The Overflow, Carry, Sign, and Zero flags are updated as if the subtract instruction has been

performed. The main purpose of the compare instruction is to update the flags so that a
subsequent conditional jump instruction can test them.

� CMP can perform unsigned and signed comparisons
� The destination and source operands can be unsigned or signed

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 1 1 1 1 1 1

OR

setunchanged

� For unsigned comparison, we examine ZF and CF flags
Unsigned Comparison ZF CF

unsigned destination < unsigned source 0 1

unsigned destination > unsigned source 0 0

destination = source 1 0

� For signed comparison, we examine SF, OF, and ZF
Signed Comparison Flags

signed destination < signed source SF ≠ OF

signed destination > signed source SF = OF, ZF = 0

destination = source ZF = 1

Example1: destination == source
mov al,5
cmp al,5 ; Zero flag set

Example2: destination < source
mov al,4
cmp al,5 ; Carry flag set

Example3: destination > source
mov al,6
cmp al,5 ; ZF = 0, CF = 0

(both the Zero and Carry flags are clear)
� The comparisons shown here are performed with signed integers.

Example4: destination > source
mov al,5
cmp al,-2 ; Sign flag == Overflow flag

Example5: destination < source
mov al,-1
cmp al,5 ; Sign flag != Overflow flag

Example6:
TITLE Demonstrating the Compare Instruction (cmp.as m)
.686
.MODEL flat, stdcall
.STACK
INCLUDE Irvine32.inc
.data
var1 SDWORD -3056
.code
main PROC
 mov eax, 0f7893478h
 mov ebx, 1234F678h
 cmp al, bl
 cmp ax, bx
 cmp eax, ebx
 cmp eax, var1
 exit
main ENDP
END main

� Bitwise Logical instructions are the most primitive operations needed by every computer
architecture

� bitwise logical operations are performed at bit-by-bit basis
� All logical instructions need two operands except NOT instructions which is a unary.
� The result of the operation is stored in the Destination except Test instruction, which must be a

general register or a memory location.
� The Source may be an immediate value, register, or memory location.
� The Destination and Source CANNOT both be memory locations.
� The Destination and Source must be of the same size (8-, 16-. 32-bit).
� All logical instructions, except NOT, affect the status flags
� Except NOT, all logical instructions clear carry flag (CF) and overflow flag (OF).
� Remaining three flags record useful information: Zero flag (ZF), Sign flag (SF), Parity flag

(PF).
Applications

1. The main usage of bitwise logical instructions is:
o to clear
o to set
o to invert
o to isolate

some selected bits in the Destination operand.
� To do this, a Source bit pattern known as a mask is constructed. The mask bits are chosen so

that the selected bits are modified in the desired manner when an instruction of the form:
LOGIC_INSTRUCTION Destination , Mask

� Is executed. The Mask bits are chosen based on the following properties of AND, OR, and
XOR :

� If X represents a bit (either 0 or 1) then:
X AND 0 = 0 X OR 0 = X X XOR 0 = X

X AND 1 = X X OR 1 = 1 X XOR 1 = X'
Thus,

� The AND instruction can be used to CLEAR specific Destination bits while preserving the
others. A zero mask bit clears the corresponding Destination bit; a one mask bit preserves the
corresponding destination bit.

� The OR instruction can be used to SET specific Destination bits while preserving the others. A
one mask bit sets the corresponding Destination bit; a zero mask bit preserves the
corresponding Destination bit.

� The XOR instruction can be used to INVERT specific Destination bits while preserving the
others. A one mask bit inverts the corresponding Destination bit; a zero mask bit preserves the
corresponding Destination bit.

Example 1
� Task: Convert the character in AL to upper case.
� Solution: Use the AND instruction to clear bit 5.

mov al,'a' ; AL = 01100001b
and al,11011111b ; AL = 01000001b

Example 2
� Task: Convert a binary decimal byte into its equivalent ASCII decimal digit.
� Solution: Use the OR instruction to set bits 4 and 5.

mov al,6 ; AL = 00000110b
or al,00110000b ; AL = 00110110b

The ASCII digit '6' = 00110110b
Example 3

Converting Characters to Uppercase
� AND instruction can convert characters to uppercase

 'a' = 0 1 1 0 0 0 0 1 'b' = 0 1 1 0 0 0 1 0
 'A' = 0 1 0 0 0 0 0 1 'B' = 0 1 0 0 0 0 1 0

� Solution: Use the AND instruction to clear bit 5
 mov ecx, LENGTHOF mystring
 mov esi, OFFSET mystring
L1: and BYTE PTR [esi], 11011111b ; clear bit 5
 inc esi
 loop L1

2. The other usage of the logical instructions is represent the set operation
� Some application manipulate sets of items selected from a limited-sized universal set
� To represent the Set Complement operation we use the NOT instruction
� To represent the Set Intersection operation we use the AND instruction
� To represent the Set Union operation we use the OR instruction

Example 1
SetX = 10000000 00000000 00000000 00000111
.code
mov eax, SetX
not eax ; the complement of SetX

Example 2
SetX = 10000000 00000000 00000000 00000111
SetY = 10000011 00000110 01100001 10010001
.code
mov eax, SetX
and eax, SetY ; the SetX and SetY intersection saved in EAX
 ; EAX = 10000000 00000000 00000000 00000001

Example 3
SetX = 10000000 00000000 00000000 00000111
SetY = 10000011 00000110 01100001 10010001
.code
mov eax, SetX
or eax, SetY ; the SetX and SetY union saved in EAX
 ; EAX = 10000011 00000110 01100001 10010111

