Microprocessors (0630371)
Fall 2010/2011 — Lecture Notes # 17

Boolean and Comparison Instructions

Objectives of the Lecture
AND Instruction

OR Instruction

XOR Instruction

NOT Instruction

TEST Instruction
CMP Instruction
Applications

VVVYYVYY

Programs that deal with hardware devices must e mbmanipulate individual bits in numbers.
Individual bits must be tested, cleared and setal@mcryption and compression also rely on bit
manipulation.

AND Instruction

» Performs a Boolean AND operation between eachgbairatching bits in two operands
» Syntax:

AND desti nati on, source
» (same operand types as MOV)

AND reg, reg
AND reg, mem
AND reg, imm
AND mem, reg
AND mem, imm
X v X A y
oo 0 00111011
0| 1 0 AND 00001111
L | oo 0 cleaed —— 0000/1011 unchanged
l l 1

Logical truth table

OR Instruction
» Performs a Boolean OR operation between each paiatching bits in two operands
» Operands can be 8, 16, or 32 bits and they must the same size
» Syntax (the same as the AND instruction):
OR destination, source

o | o 0 00111011
o | 1 I OR 00001111
! v : unchanged —— 00111111 set

Logical truth table
XOR Instruction
» Performs a Boolean exclusive-OR operation betweaech epair of matching bits in two
operands

» Syntax:
XOR destination, source

X v XEy

4] 4] 0] 0 0 1 1 1 0 1 1
o1] XOR 00001111
l 0 1 unchanged 00110100 inverted

l l 0

» XOR is a useful way to toggle (invert) the bitsaim operand.

NOT Instruction
» Performs a Boolean NOT operation on a single daistin operand

» Syntax:
NOT destination
X —X
NOT 00111011
F T .
11000100 inverted
T F

TEST Instruction
» Performs a nondestructive AND operation betweeh @a@ of matching bits in two operands
» No operands are modified, but the Zero flag iscée.
CMP Instruction
» Syntax:
CMP destination, source

» The compare (CMP) instruction performs an impliettsaction of a source operand from a
destination operand. Neither operand is modified.

» The Overflow, Carry, Sign, and Zero flags are updads if the subtract instruction has been
performed. The main purpose of the compare instmicis to update the flags so that a
subsequent conditional jump instruction can tesirth

» CMP can perform unsigned and signed comparisons

<> Thedestination andsource operands can be unsigned or signed

» For unsigned comparison, we examine ZF and CF flags

Unsigned Comparison

ZF

CF

unsigned destination < unsigned source

unsigned destination > unsigned source

destination = source

» For signed comparison, we examine SF, OF, and ZF

Signed Comparison

Flags

signed destination < signed source

SF # OF

signed destination > signed source

SF=0F, ZF=0

destination = source

ZF=1

Examplel: destination == source

mov al,5

cmp al,5 ; Zero flag set
Example2: destination < source

mov al,4

cmp al,5 ; Carry flag set
Example3: destination > source

mov al,6

cmpal5 ;ZF=0,CF=0
(both the Zero and Carry flags are clear)

» The comparisons shown here are performed sighed integers

Example4: destination > source

mov al,5

cmp al,-2 ; Sign flag == Overflow flag
Example5: destination < source

mov al,-1

cmp al,5 ; Sign flag '= Overflow flag
Example6:

TITLE Demonstrating the Compare Instruction (cmp.as

.686
.MODEL flat, stdcall
.STACK
INCLUDE Irvine32.inc
.data
varl SDWORD -3056
.code
main PROC
mov eax, 0f7893478h
mov ebx, 1234F678h
cmp al, bl
cmp ax, bx
cmp eax, ebx
cmp eax, varl
exit
main ENDP
END main

» Bitwise Logical instructions are the most primitiggerations needed by every computer
architecture

bitwise logical operations are performedatby-bit basis

All logical instructions need two operands exddfT instructions which is a unary.

The result of the operation is stored in Bestination exceptTestinstruction, which must be a
general register or a memory location.

The Source may be an immediate value, registeneosnory location.

The Destination and Sour@ANNOT both be memory locations.

The Destination and Source must be of the samg&iz&6-. 32-bit).

All logical instructions, excefllOT, affect thestatus flags

Except NOT, all logical instructions clear carrgdl(CF) and overflow flag QF).

Remaining three flags record useful informationrazélag (ZF), Sign flag (SF), Parity flag
(PF).

Y V VY

YVVVYVYY

Applications

1. The main usage of bitwise logical instructions is:

o toclear
0 to set
o toinvert
o toisolate
some selected bits in the Destination operand.

» To do this, a Source bit pattern known asiask is constructed. The mask bits are chosen so

that the selected bits are modified in the desmadner when an instruction of the form:
LOGIC _INSTRUCTION Destination , Mask

» Is executed. The Mask bits are chosen based ofollogving properties ofAND, OR, and
XOR :

» If X represents a bit (either O or 1) then:

XANDO=0|XORO0O=X|XXOR0 =X
XAND 1 =X XOR1=1 XXOR1=X
Thus,

» The AND instruction can be used tOLEAR specific Destination bits while preserving the
others. Azero maskbit clears the corresponding Destination bit; a arask bit preserves the
corresponding destination bit.

» TheOR instruction can be used &ET specific Destination bits while preserving theerth A
one mask bit sets the corresponding Destination bit; a zemask bit preserves the
corresponding Destination bit.

» The XOR instruction can be used tBIVERT specific Destination bits while preserving the
others. A one mask bit inverts the correspondingtiDation bit; a zero mask bit preserves the
corresponding Destination bit.

Example 1
» Task: Convert the character in AL to upper case.
» Solution: Use th&ND instruction to clear bit 5.

mov al,'a’ : AL =01100001b
and al,11011111b : AL = 01000001b
Example 2

» Task: Convert a binary decimal byte into its eqleaad ASCII decimal digit.
» Solution: Use the OR instruction to set bits 4 &nd

mov al,6 ; AL = 00000110b

or al,00110000b - AL = 00110110b

The ASCII digit '6' = 00110110b
Example 3
Converting Characters to Uppercase
» AND instruction can convert characters to uppercase
a =01 100001 b =01 100010
‘A" =01 000001 B =01 000010
» Solution: Use the AND instruction to clear bit 5
mov ecx, LENGTHOF mystring
mov esi, OFFSET mystring
L1: and BYTE PTR [esi], 11011111b ; clear bit 5
inc esi
loop L1
2. The other usage of the logical instructions isespnt the set operation
» Some application manipulate sets of items selefcted a limited-sized universal set
» To represent thBet Complementoperation we use tHeéOT instruction
» To represent th8et Intersectionoperation we use th&ND instruction
» To represent th8et Unionoperation we use theR instruction
Example 1
SetX = 10000000 00000000 00000000 00000111
.code
mov eax, SetX
not eax ; the complement of SetX
Example 2
SetX = 10000000 00000000 00000000 00000111
SetY = 10000011 00000110 01100001 10010001

.code
mov eax, SetX
and eax, SetY ; the SetX and SetY intersection saved in EAX
. EAX =10000000 00000000 00000000 00000001
Example 3

SetX = 10000000 00000000 00000000 00000111

SetY = 10000011 00000110 01100001 10010001

.code

mov eax, SetX

or eax, SetY ; the SetX and SetY union saved in EAX

EAX =10000011 00000110 01100001 10010111

